合作客戶(hù)/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 通過(guò)柔性葉片流涂膜的超支化聚合物結(jié)構(gòu)——結(jié)論、致謝!
> 表面張力儀的校準(zhǔn)、檢測(cè)方法以及操作步驟
> 設(shè)計(jì)實(shí)驗(yàn)測(cè)量聚合物的表面張力
> 簡(jiǎn)述表面張力的性質(zhì)
> 電鍍廢水各種處理工藝詳解
> 中國(guó)科學(xué)家合成新一代生物響應(yīng)聚合物,可用于藥物遞送和生物傳感
> α-環(huán)糊精對(duì)非離子表面活性劑和兩性離子表面活性劑混合體系的界面及自組裝性質(zhì)——結(jié)論
> 20℃下,硫酸的表面張力是多少
> 生物降解過(guò)程中對(duì)于表面活性劑AS、AE的表面活性以及水生生物毒性的性能的關(guān)系——結(jié)果與討論
> 分析表面張力對(duì)涂料性能的影響
推薦新聞Info
-
> 致密砂巖儲(chǔ)層CO2-EOR項(xiàng)目研究重點(diǎn)與進(jìn)展
> 納米顆粒間相互作用對(duì)界面張力的影響
> 植物笛醇含量對(duì)油水界面張力的影響
> 表面活性劑對(duì)環(huán)氧漿液的黏度、表面張力、接觸角、滲透性的影響(二)
> 表面活性劑對(duì)環(huán)氧漿液的黏度、表面張力、接觸角、滲透性的影響(一)
> 基于表面張力理論分析激光熱應(yīng)力彎折區(qū)形貌的影響因素及形成原因
> 油藏儲(chǔ)層油水界面張力是形成啟動(dòng)壓力梯度的微觀(guān)成因
> 影響鋁粒進(jìn)入鋼液程度排序:渣鋁界面張力>鋼鋁界面張力>鋼渣界面張力
> 配制淡紅色噴印墨水時(shí),如何測(cè)量其表面張力
> 基于LB膜分析儀研究P507-N235體系萃取稀土過(guò)程的溶解行為規(guī)律
陽(yáng)離子、陰離子的界面潤(rùn)濕行為——結(jié)果和討論
來(lái)源:上海謂載 瀏覽 2064 次 發(fā)布時(shí)間:2021-12-13
3.結(jié)果和討論
在溶菌酶存在和不存在的情況下,不同種類(lèi)表面活性劑的物理化學(xué)和熱力學(xué)性質(zhì)如下所述:
3.1.臨界膠束濃度
如表1所示,對(duì)于純陽(yáng)離子(即CTAB)和陰離子(即SDBS)表面活性劑以及溶菌酶,cmc值隨著溫度的升高而增加,而對(duì)于非離子表面活性劑(即TX-100),cmc值降低。對(duì)于離子表面活性劑,與CTAB相比,SDBS的增加更高,并且在溶菌酶存在的情況下,也觀(guān)察到兩種情況下的輕微增加(表1)。對(duì)于非離子表面活性劑(即TX-100),觀(guān)察到的變化非常微小。值得一提的是,離子型兩親分子的cmc首先在低溫下降低,在高溫下升高[23],而對(duì)于非離子表面活性劑,cmc隨著溫度的升高而降低[24]。除離子系統(tǒng)外,在某些情況下還報(bào)告了cmc隨溫度的持續(xù)增加[25,26]。
3.2.界面性質(zhì)
空氣/水界面吸附的有效測(cè)量方法是通過(guò)表面過(guò)剩量,Γmax(mol?m-2),通過(guò)吉布斯吸附方程計(jì)算[27]:
和每個(gè)分子的最小面積,Amin(?2),通過(guò)以下等式[27]:
式中,R、T和NA分別為氣體常數(shù)、溫度(單位:開(kāi)爾文)和阿伏伽德羅數(shù);n的引入允許同時(shí)吸附陽(yáng)離子和陰離子,離子表面活性劑取2,非離子表面活性劑取1,離子表面活性劑取1(?γ/?logC)表示γ與logC之間的曲線(xiàn)斜率。
Γmax和Amin的值如表1所示。Γ最大值隨著溫度的升高而減小,其中隨著Amin值的增加。因此,如果三種表面活性劑均為純表面活性劑,并且存在溶菌酶,則這兩個(gè)因素相互補(bǔ)充,這表明這些系統(tǒng)同時(shí)涉及靜電和疏水作用[28]。在離子表面活性劑的情況下,與CTAB相比,SDBS的Γmax值下降更多,這表明SDBS和溶菌酶之間形成的復(fù)合物比CTAB和溶菌酶更有利。同時(shí),阿明的增加與Γmax相反。
根據(jù)式(3)[29]計(jì)算cmc下的表面壓力πcmc:
其中γ0和γcmc是指本研究中溶菌酶水溶液溶劑系統(tǒng)的表面張力和cmc值下溶液的表面張力。其值在TX-100的情況下最大,而在離子表面活性劑的情況下,SDB的值高于CTAB,因?yàn)槠涫杷愿鼜?qiáng)。
式(4)中給出的pC20值(C20是將溶劑表面張力降低20 m所需的濃度?納米?1[27]),隨著α1的增加而增加。
pC20的值越大,降低該值20 mN所需的濃度越低?M?1.這一結(jié)果表明,該系統(tǒng)具有更高的表面活性。
表1在不同溫度下,在溶菌酶存在和不存在的情況下,不同表面活性劑的各種界面性質(zhì)(cmc、Γmax、Amin、πcmc和pC20)
在溶菌酶存在和不存在的情況下,不同表面活性劑的各種熱力學(xué)參數(shù)(0D Gm、0D Gads、0D Hm、0D Hads、0D Sm和0D Sads)
3.3.膠束化和吸附的熱力學(xué)性質(zhì)
利用不同的熱力學(xué)方程計(jì)算了空氣/水界面以及膠束中的幾個(gè)熱力學(xué)參數(shù)。這些熱力學(xué)參數(shù)恰當(dāng)?shù)卮砹讼到y(tǒng)的可行性。膠束化的標(biāo)準(zhǔn)吉伯自由能0 D Gm可由式(5)計(jì)算:
式中,Xcmc是cmc的摩爾分?jǐn)?shù)單位值。
如表2所示,所有0d Gm值均為負(fù)值,表明膠束形成過(guò)程是自發(fā)的,總體趨勢(shì)表明,與溶菌酶存在時(shí)相比,純表面活性劑的0d Gm值更為負(fù)值。隨著溫度的升高,所有情況下的值都變得更為負(fù)值。結(jié)果表明,與CTAB和TX-100相比,溶菌酶存在下SDBS的膠束化過(guò)程更有利。
膠束化的標(biāo)準(zhǔn)熵(0dsm)是根據(jù)膠束化的標(biāo)準(zhǔn)吉布斯自由能的溫度依賴(lài)性,使用關(guān)系式(6)[30,31]計(jì)算得出的:
膠束化的標(biāo)準(zhǔn)焓(0d Hm)由吉布斯-亥姆霍茲方程得出:
對(duì)于所研究的系統(tǒng),0D Sm值(表2)為正值,表明純SDB的值比CTAB最大,而TX-100的值比離子表面活性劑低得多。此外,放熱的0D Hm表明,與熵效應(yīng)一樣,焓變有利于膠束化。0D Hm值(見(jiàn)表2)解釋了所有三種表面活性劑的不同趨勢(shì)。對(duì)于SDB,溶菌酶存在時(shí)該值趨于增加,而對(duì)于CTAB,溶菌酶存在時(shí)該值顯著降低。對(duì)于TX-100,在溶菌酶存在的情況下,0 D Hm的值幾乎沒(méi)有變化。
使用公式(8)[32]計(jì)算在cmc下獲得的最大吸附摩爾自由能Gmin:
Gmin是給定表面上完全吸附的兩親分子的最小自由能。自由能值越低,形成的表面越穩(wěn)定。在沒(méi)有溶菌酶的情況下,TX-100的Gmin值最小,CTAB的Gmin值最大,而TX-100的Gmin值幾乎沒(méi)有變化,CTAB的Gmin值略有增加,SDBS的Gmin值顯著增加(圖1)。
圖1。不同表面活性劑在溶菌酶存在和不存在時(shí)Gmin隨溫度的變化
使用公式(9)[33]評(píng)估標(biāo)準(zhǔn)吉布斯吸附能D Ga0 ds:
式中,πcmc=γ0–γcmc是cmc處的表面壓力;γ0和γcmc分別是純?nèi)軇┖蛢捎H性溶液在cmc處的表面張力。在所有情況下,DGa0 ds的值與0 D Gm的值的趨勢(shì)相同,但其值略為負(fù)值。
0 D Hads和DSa0 ds(表2)的值根據(jù)等式進(jìn)行評(píng)估。(10)和(11),如前所述,根據(jù)與等式對(duì)應(yīng)的關(guān)系。(6)及(七):
DSa0 ds值也為正值,但在所有情況下略大于0 D Sm值,這反映了與膠束內(nèi)表面相比,表面活性劑碳?xì)浠衔锊糠衷谄矫婵諝?水溶液界面的運(yùn)動(dòng)自由度更大。在溶菌酶存在的情況下,離子表面活性劑的DSa0 ds值降低,與CTAB相比,SDBS的降低更為顯著。對(duì)于TX-100,該值略有增加。0d Hads值在所有情況下均為負(fù)值,與0d Hm相比,其量級(jí)略低,但趨勢(shì)與0d Hm相同。
3.4.結(jié)構(gòu)對(duì)膠束化和吸附的影響
根據(jù)Rosen[34]的規(guī)定,計(jì)算了在零表面壓力下,在沒(méi)有或存在溶菌酶的情況下,將表面活性劑分子從單層轉(zhuǎn)移到膠束中所涉及的工作(0 0 mic ads D G G-D),并在表3中列出。如表3所示,“轉(zhuǎn)移功”(即,相對(duì)于膠束化的容易程度,在零表面壓力下易于吸附形成單層)幾乎沒(méi)有變化,除了在溶菌酶存在下SDB的情況下,溫度從298 K變化到318 K。此外,0 mic ads D G-D的正值表明吸附時(shí)的正熵變大于膠束化[35]。
3.5.潤(rùn)濕性
為了探索CTAB、SDBS和TX-100(含和不含溶菌酶)對(duì)PMMA的潤(rùn)濕行為,觀(guān)察了cmc上、下方以及cmc處的接觸角值(圖2)。
圖2。在溶菌酶存在和不存在的情況下,不同種類(lèi)表面活性劑的濃度與接觸角曲線(xiàn)圖
表3在不存在和存在溶菌酶的情況下,結(jié)構(gòu)對(duì)不同表面活性劑膠束化和吸附的影響
從圖2可以看出,在沒(méi)有溶菌酶的情況下,CTAB的接觸角值最大,其次是SDB,在PMMA上觀(guān)察到TX-100的最小值。此外,與CTAB相比,SDBS中的接觸角值更小,因?yàn)镾DBS比CTAB更具親水性。數(shù)據(jù)還顯示,TX-100的固液相互作用最大,因?yàn)榇嬖诰垩跻蚁┗4祟?lèi)表面活性劑的吸附最初通過(guò)其環(huán)氧乙烷基團(tuán)和吸附劑表面之間的氫鍵進(jìn)行[36,37],從而產(chǎn)生TX-100的最小接觸角值。此外,在溶菌酶存在的情況下,由于疏水-疏水相互作用,所有三種表面活性劑的接觸角值(PMMA上純?nèi)芫笧?3.80)都會(huì)降低,但TX-100的下降幅度最大。因此,有人認(rèn)為,在存在溶菌酶的情況下,PMMA在氣道-水界面上的潤(rùn)濕性更高,而在CTAB和SDBS(存在溶菌酶的情況下)的情況下,由于CTAB溶菌酶和SDBS溶菌酶之間形成強(qiáng)烈的復(fù)合物,這種效應(yīng)與沒(méi)有溶菌酶的情況相反。這種強(qiáng)復(fù)合物的形成實(shí)際上是由于溶菌酶(天冬氨酸)上的負(fù)電荷,由于正電荷的性質(zhì),溶菌酶(天冬氨酸)與CTAB緊密結(jié)合。
陽(yáng)離子、陰離子的界面潤(rùn)濕行為——摘要、介紹
陽(yáng)離子、陰離子的界面潤(rùn)濕行為——實(shí)驗(yàn)材料和方法