合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
推薦新聞Info
-
> 致密砂巖儲(chǔ)層CO2-EOR項(xiàng)目研究重點(diǎn)與進(jìn)展
> 納米顆粒間相互作用對(duì)界面張力的影響
> 植物笛醇含量對(duì)油水界面張力的影響
> 表面活性劑對(duì)環(huán)氧漿液的黏度、表面張力、接觸角、滲透性的影響(二)
> 表面活性劑對(duì)環(huán)氧漿液的黏度、表面張力、接觸角、滲透性的影響(一)
> 基于表面張力理論分析激光熱應(yīng)力彎折區(qū)形貌的影響因素及形成原因
> 油藏儲(chǔ)層油水界面張力是形成啟動(dòng)壓力梯度的微觀成因
> 影響鋁粒進(jìn)入鋼液程度排序:渣鋁界面張力>鋼鋁界面張力>鋼渣界面張力
> 配制淡紅色噴印墨水時(shí),如何測(cè)量其表面張力
> 基于LB膜分析儀研究P507-N235體系萃取稀土過(guò)程的溶解行為規(guī)律
海洋細(xì)菌中生物表面活性物質(zhì)——結(jié)論、致謝!
來(lái)源:上海謂載 瀏覽 957 次 發(fā)布時(shí)間:2021-10-19
結(jié)論
在本研究中,從被石油烴污染的海洋環(huán)境中獲得了 18 株耐寒且能夠產(chǎn)生生物 SAC 的分離株。 分離物是假單胞菌屬、假交替單胞菌屬、紅球菌屬、鏈球菌屬、Cobetia、Glaciecola、Marinomonas、Serratia 和 Psychromonas 的成員。 其中,紅球菌屬。 LF-13 和紅球菌屬。 在油性底物(如煤油、正十六烷或菜籽油)存在的情況下,LF-22 能夠顯著降低培養(yǎng)基的表面張力。 兩種菌株中的生物表面活性劑合成不一定與生長(zhǎng)相關(guān),這表明靜息細(xì)胞可用于從兩種紅球菌菌株中生產(chǎn)生物表面活性劑。 從紅球菌屬中提取的生物表面活性劑。 菌株 LF-22 能夠提高正十六烷在 13°C 的生物降解率。 應(yīng)純化這些分離物中的生物表面活性劑,以進(jìn)一步闡明其化學(xué)結(jié)構(gòu)和特性,并研究其在溢油生物修復(fù)和其他行業(yè)中的應(yīng)用。
披露聲明
作者沒(méi)有報(bào)告潛在的利益沖突。
資金
本文中描述的工作得到了挪威研究委員會(huì)和 ENI Norge [項(xiàng)目編號(hào) 195160] 的資助以及 MABIT 計(jì)劃 [項(xiàng)目編號(hào) BS0052] 的資助。
參考
[1] Rodrigues L, Banat IM, Teixeira J, Oliveira R. Biosurfactants: potential applications in medicine. J Antimicrob Chemother. 2006;57:609–618.
[2] Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P. Biosurfactants: properties, commercial production and application. Curr Sci. 2008;94:736–747.
[3] Pattanathu KSM, Gakpe E. Production, characterization and applications of biosurfactants-review. Biotechnology. 2008;7:360–370.
[4] Paramaporn C, Phonnok S, Durand A, Marie E, Thanomsub BW. Bioproduction and anticancer activity of biosurfactant produced by the dematiaceous fungus Exophiala dermatitidis SK80. J Microbiol Biotechnol. 2010;20:1664–1671.
[5] Kosaric N. Biosurfactants and their application for soil bioremediation. Food Technol Biotechnol. 2001;39:295–304.
[6] Mulligan CN. Environmental applications for biosurfactants. Environ Pollut. 2005;133:183–198.
[7] Damasceno FRC, Freire DMG, Cammarota MC. Assessing a mixture of biosufactant and enzyme pools in the anaerobic biological treatment of wastewater with high-fat content. Environ Technol. 2014;35:2035–2045.
[8] Cheng KY, Zhao ZY,Wong JWC. Solubilization and desorption of PAHs in soil aqueous system by biosurfactants produced from Pseudomonas aeruginosa P-CG3 under thermophilic condition. Environ Technol. 2004;25:1159–1165.
[9] Whyte LG, Slagman SJ, Pietrantonio F, Bourbonnière L, Koval SF, Lawrence JR, Inniss WE, Greer CW. Physiological adaptations involved in alkane assimilation at low temperatures by Rhodococcussp. strain Q15. Appl Environ Microbiol. 1999;65:2961–2968.
[10] Yakimov MM, Giuliano L, Bruni V, Scarf? S, Golyshin PN. Characterization of Antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. New Microbiol. 1999;22:249–259.
[11] Bushnell LD, Haas HF. The utilization of certain hydrocarbons by microorganisms. J Bacteriol. 1941;41:653–673.
[12] Chen CY, Baker SC, Darton RC. The application of a high throughput analysis method for screening of potential biosurfactants from natural sources. J Microbiol Methods. 2007;70:503–510.
[13] Walter V, Syldatk C, Hausmann R. Biosurfactants. New York: Springer; 2010. Chapter 1, Screening concepts for the isolation of biosurfactant producing microorganisms; p. 1–13.
[14] Batista S, Mounteer A, Amorim F, Tótolaa MR. Isolation and characterization of biosurfactant/bioemulsifier producing bacteria from petroleum contaminated sites. Bioresour Technol. 2006;97:868–875.
[15] Tadros T. Applied surfactants: principle and applications. Weinheim: Wiley VCH; 2005. Adsorption of surfactants at the air/liquid and liquid/liquid interface; p. 81–82.
[16] Kuyukina MS, Ivshina IB, Philip JC, Christofi N, Dunbar SAE, Ritchkova MI. Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. J Microbiol Methods. 2001;46:149–156.
[17] Zhang C. Fundamentals of environmental sampling and analysis. Hoboken, NJ: Wiley; 2007. Chapter 6, Common operations and wet chemical methods in environmental laboratories; p. 148–149.
[18] Olivera NL, Commendatore MG, Delgado O, Esteves JL. Microbial characterization and hydrocarbon biodegradation potential of natural bilge waste microflora. J Ind Microbiol Biotechnol. 2003;30:542–548.
[19] Willumsen PAE, Karlson U. Screening of bacteria, isolated from PAH-contaminated soils for production of biosurfactants and bioemulsifiers. Biodegradation. 1997;7:415–423.
[20] Sapute SK, Bhawsar BD, Dhakephalkar PK, Chopade BA. Assessment of different screening methods for selecting biosurfactant producing marine bacteria. Indian J Marine Sci. 2008;37:243–250.
[21] Yakimov MM, Gentile G, Bruni V, Cappello S, D'Auria G, Golyshin PN, Giuliano L. Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria. FEMS Microbiol Ecol. 2009;49:419–432.
[22] Gerdes B, Brinkmeyer R, Dieckmenn G, Helmke E. Influence of crude oil on changes of bacterial communities in Arctic sea-ice. FEMS Microbiology Ecology. 2005;53:129–139.
[23] Brakstad OG, Bonaunet K. Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0–5°C) and bacterial communities associated with degradation. Biodegradation. 2006;7:71–82.
[24] Margesin R. Alpine microorganisms: useful tools for lowtemperature bioremediation. J Microbiol. 2007;45:281–285.
[25] Grossman M, Prince R, Garret R, Garrett K, Bare R, Lee K, Sergy G, Owens E, Guénette C. Microbial diversity in oiled and unoiled shoreline sediments in the Norwegian Arctic. In: Bell CR, Brylinsky M, Johnson-Green P, editors. The 8th international symposium on microbial ecology. Proceedings; 1998 Aug 9–14; Halifax, NS (Canada). [26] Deppe U, Richnow HH, Michaelis W, Antranikian G. Degradation of crude oil by an Arctic microbial consortium. Extremophiles. 2005;9:461–470.
[27] Brakstad OG, Nonstad I, Faksness LG, Brandvik PJ. Responses of microbial communities in Arctic sea ice after contamination by crude petroleum oil. Microb Ecol. 2008;55:540–552.
[28] R?berg S, ?sterhus JI, Landfald B. Dynamics of bacterial community exposed to hydrocarbons and oleophilic fertilizer in high-Arctic intertidal beach. Polar Biol. 2011;34:1455– 1465.
[29] Déziel E, Lépine F, Milot S, Villemur R. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3- hydroyalkanoyloxy) alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology. 2003;149:2005–2013. [30] Benincasa M, Abalos A, Oliveira I, Manresa A. Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soap stock. Antonie van Leeuwenhoek. 2004;85:1–8.
[31] Neu TR, Haertner T, Poralla K. Surface active properties of viscosin: a peptidolipid antibiotic. Appl Microbiol Biotechnol. 1990;32:518–520.
[32] Pedras MSC, Ismail N, Quail JW, Boyetchko SM. Structure, chemistry, and biological activity of pseudophomins A and B, new cyclic lipodepsipeptides isolated from the biocontrol bacterium Pseudomonas fluorescens. Photochemistry. 2003;62:1105–1114.
[33] Kuiper I, Lagendijk EL, Pickford R, Derrick JP, Lamers GEM, Thomas-Oates JE. Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol. 2004;51:97–113.
[34] Anu-Appaiah KA, Karanth NGK. Insecticide specific emulsi- fier production by hexachlorocyclohexane utilizing Pseudomonas tralucida Ptm strain. Biotechnol Lett. 1991;13:371–374.
[35] Bonilla M, Olivaro C, Corona M, Vazquez A, Soubes M. Production and characterization of a new bioemulsifier from Pseudomonas putida ML2. J Appl Microbiol. 2005;98:456–463.
[36] Uchida Y, Tsuchiya R, Chino M, Hirano J, Tabuchi T. Extracellular accumulation of mono- and di-succinoyl trehalose lipids by a strain of Rhodococcus erythropolis grown on n-alkanes. Agric Biol Chem. 1989;53:757–763.
[37] Lang S, Philp CJ. Surface active lipids in Rhodococci. Antonie van Leeuwenhoek. 1998;74:59–70. [38] Peng F, Liu Z, Wang L, Shao Z. An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J Appl Microbiol. 2007;102:1603–1611.
[39] Rougeaux H, Quezennec J, Carlson RW, Kervarec N, Pichon R, Talaga P. Structural determination of the exopolysaccharide of Pseudoalteromonas strain HYD 721 isolated from a deepsea hydrothermal vent. Carbohydr Res. 1999;315:273–285.
[40] Mancuso-Nichols C, Garon S, Bowman JP, Raguénès G, Guézennec J. Production of exopolysaccharides by Antarctic marine bacterial isolates. J Appl Microbiol. 2004;96:1057–1066.
[41] Mancuso-Nichols C, Bowman JP, Guezennec J. Effects of incubation temperature on growth and production of exopolysaccharides by an Antarctic sea ice bacterium grown in batch culture. Appl Environ Microbiol. 2005;71:3519–3523.
[42] Gutiérrez T, Shimmield T, Haidon C. Emulsifying and metal ion binding activity of a glycoprotein exopolymer produced by Pseudoalteromonas sp. strain TG12. Appl Environ Microbiol. 2008;74:4867–4876.
[43] Matsuyama H, Hirabayashi T, Kasahara H, Minami H, Hoshino T, Yumoto I. Glaciecola chathamensis sp. nov., a novel marine polysaccharide-producing bacterium. Int J Syst Evol Microbiol. 2006;56:2883–2886.
[44] Fiebig R, Schulze D, Chung JC, Lee ST. Biodegradation of biphenyls (PCBs) in the presence of a bioemulsifier produced on sunflower oil. Biodegradation. 1997;8:67–75.
[45] Cameotra SS, Makkar RS. Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol. 1998;50:520–529.
[46] Kim JS, Powalla M, Lang S, Wagner F, Lunsdorf H, Wray V. Microbial glycolipid production under nitrogen limitation and resting cell conditions. J Biotechnol. 1990;13:257–266.
[47] Kitamoto D, Fuzishiro T, Yanagishita H, Nakane T, Nakahara T. Production of mannosylerythritol lipids as biosurfactants by resting cells of Candida Antarctic. Biotechnol Lett. 1992;14:305–310.